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Outline

What is reg-bounded synthesis?
– motivation
– register automata
– the synthesis problem
– history
– known and recent advances

Recent advances:
– reg-bounded synthesis:

from (N, <) to regapprox domains
– reducibility between domains



Synthesis

i0o0i1o1... ∈ (I · O)ω

Synthesis problem:
→ specification language ⊆ (I · O)ω

← transducer whose every interaction ∈ spec, else unrealizable



Why Consider Data Transducers?

data buffer:
“always relay input data to the output”
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Synthesis of Register Transducers

Synthesis problem:
given: universal register automaton S

return: register transducer T with L(T ) ⊆ L(S)

(D, =) (Q, <) (N, <)
unconstrained ✗ [2] ✗ ✗

reg-bounded ✓[1] ✓[2] ✓[3]

Register-bounded version:
given: universal register automaton S, bound k

return: k-register transducer T with L(T ) ⊆ L(S)

[1]: R.Bloem, B.Maderbacher, A.K.: Bounded Synthesis of Register Transducers
[2]: L.Exibard: Automatic Synthesis of Systems with Data
[3]: L.Exibard, E.Filiot, A.K.: Generic Solution to Register-bounded Synthesis
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Recent Advances

Reg-bounded synthesis is decidable
– for (N, <)
– for regapprox domains

Reducibility between data domains.
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Insight 1: Abstraction

Given S and k, create a finite-alphabet specification WS,k:
WS,k is realizable by a Mealy machine

⇔
S is realizable by a k-reg transducer.

W F
S,k = ¬

�
aT | ∃aS ∈ L(Ssynt) : aT ⊗ aS ∈ FEAS

�
.

Solving such a synthesis problem is hard, as FEAS is not ω-regular :-(
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Generic Solution

Data domain is regapprox if for every R there exists eff.constr. ω-
regular over-approximation QFEAS
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Theorem:
on regapprox domains, register-bounded synthesis is decidable.
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Main Theorem

Reg-bounded synthesis in (N, <) is solvable in time
exp(exp(r, k), n, c)

for every given universal parity register automaton
with r registers, n states, c priorities, and bound k.

A similar complexity holds for domains (Q, <) and (D, =).



Reduction between Domains

If D reduces to D�, and D� is regapprox, then D is regapprox.

Two definitions of reductions:
– via transducer relations,
– via first-order formulas.

Allows us to state decidability of register-bounded synthesis
for (Nd, <d) and (Σ∗, ≺).
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Experiments (fresh)
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Story of Register-bounded Synthesis

2014: R.Ehlers, S.Seshia, H.Kress-Gazit:
. Synthesis with Identifiers
2018: A.K., B.Maderbacher, R.Bloem:
. Bounded Synthesis of Register Transducers
2019: A.K., O.Kupferman:
. Register-bounded Synthesis
2019: L.Exibard, E.Filiot, P-A.Reynier:
. Synthesis of Data Word Transducers
2021: L.Exibard, E.Filiot, A.K.:
. Church Synthesis on Register Automata over
. Linearly Ordered Data Domains
2022: L.Exibard, E.Filiot, A.K.:
. Generic Solution to Register-bounded Synthesis


