# Recent advances in register-bounded synthesis

Léo Exibard, Emmanuel Filiot, Ayrat Khalimov MVF seminar, May 2022

## OUTLINE

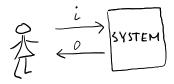
What is reg-bounded synthesis?

- motivation
- register automata
- the synthesis problem
- history
- known and recent advances

Recent advances:

- reg-bounded synthesis: from  $(\mathbb{N}, <)$  to regapprox domains
- reducibility between domains

#### Synthesis

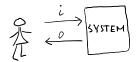


 $i_0o_0i_1o_1...\in (I\cdot O)^\omega$ 

Synthesis problem:

- $\rightarrow$  specification language  $\subseteq (I \cdot O)^{\omega}$
- $\leftarrow$  transducer whose every interaction  $\in$  spec, else unrealizable

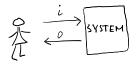
# Why Consider Data Transducers?



data buffer:

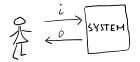
"always relay input data to the output"

## Why Consider Data Transducers?

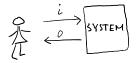


priority arbiter:

"if a process requests an access, it is eventually granted to this or higher-ID process"



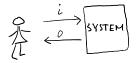
Synthesis problem: given specification  $S \subseteq (I \cdot O)^{\omega}$ , return transducer with  $L(T) \subseteq S$  or UNREAL



Synthesis problem: given specification  $S \subseteq (I \cdot O)^{\omega}$ , return transducer with  $L(T) \subseteq S$  or UNREAL

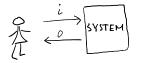
Finite-alphabet case:

spec: LTL,  $\omega\text{-reg}$  expressions, MSO, nondet/univ/det automata



Synthesis problem: given specification  $S \subseteq (I \cdot O)^{\omega}$ , return transducer with  $L(T) \subseteq S$  or UNREAL

Finite-alphabet case: spec: LTL,  $\underbrace{\omega\text{-reg expressions, MSO, nondet/univ/det automata}}_{<\underline{\omega\text{-reg expressions, MSO, nondet/univ/det automata}}$ 

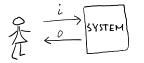


Synthesis problem: given specification  $S \subseteq (I \cdot O)^{\omega}$ , return transducer with  $L(T) \subseteq S$  or UNREAL

Finite-alphabet case: spec: LTL,  $\underbrace{\omega\text{-reg expressions, MSO, nondet/univ/det automata}}_{e_{quality upressive}}$ 

Data case:

spec: FO with  $>_d$ , Constraint LTL, LTL with freeze quantifier, pebble automata, variable automata, register automata ...



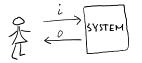
Synthesis problem: given specification  $S \subseteq (I \cdot O)^{\omega}$ , return transducer with  $L(T) \subseteq S$  or UNREAL

Finite-alphabet case: spec: LTL,  $\underbrace{\omega\text{-reg expressions, MSO, nondet/univ/det automata}}_{e_quality expressive}$ 

Data case:

spec: FO with  $>_d$ , Constraint LTL, LTL with freeze quantifier, pebble automata, variable automata, register automata ...

incompara ble!



Synthesis problem: given specification  $S \subseteq (I \cdot O)^{\omega}$ , return transducer with  $L(T) \subseteq S$  or UNREAL

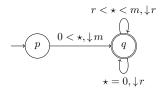
Finite-alphabet case: spec: LTL,  $\underbrace{\omega\text{-reg expressions, MSO, nondet/univ/det automata}}_{e_quality expressive}$ 

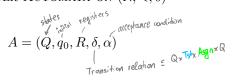
Data case:

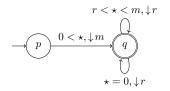
spec: FO with  $>_d$ , Constraint LTL, LTL with freeze quantifier, pebble automata, variable automata, register automata ...

incompara ble!

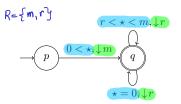
 $A = (Q, q_0, R, \delta, \alpha)$ 



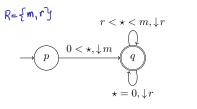




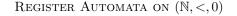




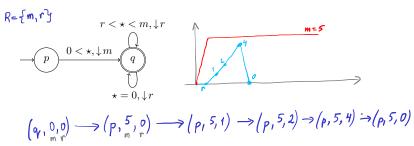




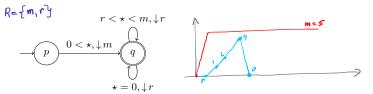
 $(q_1, 0, 0)_{m,r} \longrightarrow (p, \frac{5}{n}, 0)_{r} \longrightarrow (p, 5, 1) \longrightarrow (p, 5, 2) \rightarrow (p, 5, 4) \rightarrow (p, 5, 0)$ 







$$A = (\overset{\mathrm{states}}{Q}, \overset{\mathrm{registers}}{Q}, \overset{\mathrm{alleptance condition}}{(Q, q_0, R, \delta, \alpha)} \overset{\mathrm{alleptance condition}}{\underset{\mathrm{transition relation } \leq Q_{\mathrm{x}}} \mathrm{Tstx} \mathrm{Aggn}_{\mathrm{x}} \mathrm{G}$$



 $(q_1, 0, 0)_{m,r} \longrightarrow (p, \frac{5}{m}, \frac{0}{r}) \longrightarrow (p_1, 5, 1) \longrightarrow (p_1, 5, 2) \rightarrow (p_1, 5, 4) \rightarrow (p_1, 5, 0)$ 

Run is a sequence of configurations.

nondet universal det variants

#### DATA DOMAIN

- A data domain is a tuple  $(\mathbb{D}, P, C, c_0)$ , where:
- $\mathbb D$  is a set of its elements,
- ${\cal P}$  interpreted predicates,
- C set of constants,  $c_0$  is initialiser.

## DATA DOMAIN

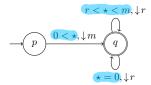
- A data domain is a tuple  $(\mathbb{D}, P, C, c_0)$ , where:  $\mathbb{D}$  is a set of its elements,
- P interpreted predicates,
- C set of constants,  $c_0$  is initialiser.

 $(N, \{<\}, \{\circ\}, \circ)$  $(\mathbb{D}, \{=\}, \{\circ\}, \circ\})$ 

#### DATA DOMAIN

- A data domain is a tuple  $(\mathbb{D}, P, C, c_0)$ , where:  $\mathbb{D}$  is a set of its elements,
- P interpreted predicates,
- C set of constants,  $c_0$  is initialiser.

 $(N, \{<\}, \{\circ\}, \circ)$  $(\mathbb{D}, \{=\}, \{\circ\}, 0\}$ 



Tests are conjunctions of literals Action words (tst, asgn)(tst, asgn)... FEAS - feasible action words

#### Synthesis of Register Transducers

Synthesis problem: given: universal register automaton Sreturn: register transducer T with  $L(T) \subseteq L(S)$ 

### Synthesis of Register Transducers

Synthesis problem: given: universal register automaton Sreturn: register transducer T with  $L(T) \subseteq L(S)$ 

#### Synthesis of Register Transducers

Synthesis problem: given: universal register automaton Sreturn: register transducer T with  $L(T) \subseteq L(S)$ 

|               | $(\mathbb{D},=)$ | $(\mathbb{Q},<)$ | $(\mathbb{N},<)$ |
|---------------|------------------|------------------|------------------|
| unconstrained | <b>×</b> [2]     | ×                | ×                |
| reg-bounded   | ✓[1]             | <b>√</b> [2]     | <b>√</b> [3]     |

Register-bounded version: given: universal register automaton S, bound kreturn: k-register transducer T with  $L(T) \subseteq L(S)$ 

[1]: R.Bloem, B.Maderbacher, A.K.: Bounded Synthesis of Register Transducers

[2]: L.Exibard: Automatic Synthesis of Systems with Data

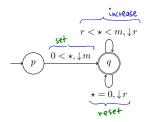
[3]: L.Exibard, E.Filiot, A.K.: Generic Solution to Register-bounded Synthesis

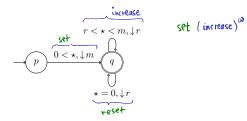
## RECENT ADVANCES

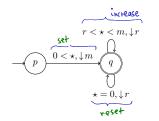
Reg-bounded synthesis is decidable

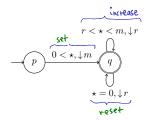
- $\quad \text{for } (\mathbb{N},<)$
- for *regapprox* domains

Reducibility between data domains.

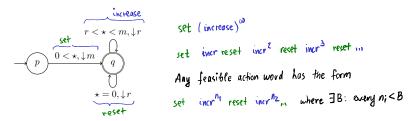








set (increase)<sup>60</sup>  
set increaset incr<sup>2</sup> reset incr<sup>3</sup> reset ...  
Any feasible action word has the form  
set incr<sup>n1</sup> reset incr<sup>n2</sup>, where 
$$\exists B: every n; < B$$



An action word is a sequence  $(tst_0, asgn_0)(tst_1, asgn_1) \dots$ It is *feasible* if it is induced by some data word.





An action word is a sequence  $(tst_0, asgn_0)(tst_1, asgn_1) \dots$ It is *feasible* if it is induced by some data word. In (N, 4), action word is *feasible* iff it has: No inf decreasing chains no unbounded chains of the form  $\frac{2}{3} \frac{2}{3} \frac$ 

Let FEAS be the set of feasible action words over given R.



Given S and k, create a *finite-alphabet* specification  $W_{S,k}$ :  $W_{S,k}$  is realizable by a Mealy machine  $\Leftrightarrow$ S is realizable by a k-reg transducer.

#### INSIGHT 1: Abstraction



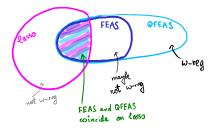
Given S and k, create a *finite-alphabet* specification  $W_{S,k}$ :  $W_{S,k}$  is realizable by a Mealy machine  $\Leftrightarrow$ S is realizable by a k-reg transducer.

$$W_{S,k}^{\mathsf{F}} = \neg \big\{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \big\}.$$

Solving such a synthesis problem is hard, as FEAS is not  $\omega$ -regular :-(

Data domain is *regapprox* if for every R there exists eff.constr.  $\omega$ -regular over-approximation QFEAS

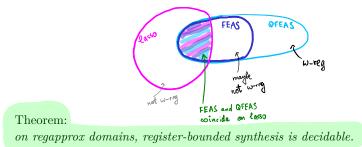
 $\mathsf{QFEAS} \cap lasso \subseteq \mathsf{FEAS} \subseteq \mathsf{QFEAS}.$ 



#### GENERIC SOLUTION

Data domain is *regapprox* if for every R there exists eff.constr.  $\omega$ -regular over-approximation QFEAS

 $\mathsf{QFEAS} \cap lasso \subseteq \mathsf{FEAS} \subseteq \mathsf{QFEAS}.$ 



#### Proof Idea

L1: S is realisable by k-reg transducer iff  $W_{S,k}^{\mathsf{F}}$  is realisable:  $W_{S,k}^{\mathsf{F}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \}.$ 

L2:  $W_{S,k}^{\mathsf{F}}$  is realisable iff  $W_{S,k}^{\mathsf{QF}}$  is realisable:  $W_{S,k}^{\mathsf{QF}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) : \bar{a}_T \otimes \bar{a}_S \in \mathsf{QFEAS} \}.$ 

L1: S is realisable by k-reg transducer iff  $W_{S,k}^{\mathsf{F}}$  is realisable:  $W_{S,k}^{\mathsf{F}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \}.$ 

L2: 
$$W_{S,k}^{\mathsf{F}}$$
 is realisable iff  $W_{S,k}^{\mathsf{QF}}$  is realisable:  
 $W_{S,k}^{\mathsf{QF}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) : \bar{a}_T \otimes \bar{a}_S \in \mathsf{QFEAS} \}.$ 

Proof idea.  $W^{\text{QF}}$  is realisable  $\implies W^{\text{F}}$  is realisable



L1: S is realisable by k-reg transducer iff  $W_{S,k}^{\mathsf{F}}$  is realisable:  $W_{S,k}^{\mathsf{F}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \}.$ 

L2: 
$$W_{S,k}^{\mathsf{F}}$$
 is realisable iff  $W_{S,k}^{\mathsf{QF}}$  is realisable:  
 $W_{S,k}^{\mathsf{QF}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) : \bar{a}_T \otimes \bar{a}_S \in \mathsf{QFEAS} \}.$ 

Proof idea. WaF is realisable <= WF is realisable

L1: S is realisable by k-reg transducer iff  $W_{S,k}^{\mathsf{F}}$  is realisable:  $W_{S,k}^{\mathsf{F}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \}.$ 

L2: 
$$W_{S,k}^{\mathsf{F}}$$
 is realisable iff  $W_{S,k}^{\mathsf{QF}}$  is realisable:  
 $W_{S,k}^{\mathsf{QF}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) : \bar{a}_T \otimes \bar{a}_S \in \mathsf{QFEAS} \}.$ 

Proof idea.  $W^{QF}$  is realisable  $\Leftarrow W^{F}$  is realisable By contradiction. Suppose T realises but not  $W^{QF}$ . Show that  $\top \neq W^{QF} \Longrightarrow \top \neq W^{F}$ :

L1: S is realisable by k-reg transducer iff  $W_{S,k}^{\mathsf{F}}$  is realisable:  $W_{S,k}^{\mathsf{F}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \}.$ 

L2: 
$$W_{S,k}^{\mathsf{F}}$$
 is realisable iff  $W_{S,k}^{\mathsf{QF}}$  is realisable:  
 $W_{S,k}^{\mathsf{QF}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) : \bar{a}_T \otimes \bar{a}_S \in \mathsf{QFEAS} \}.$ 

Proof idea.  $W^{QF}$  is realisable  $\iff W^{F}$  is realisable By contradiction. Suppose T realises but not  $W^{QF}$ . Show that  $T \neq W^{QF} \implies T \neq W^{F}$ : Tn  $\overline{W^{QF}} \neq \emptyset$  $\overline{W^{-reg}}$ 

L1: S is realisable by k-reg transducer iff  $W_{S,k}^{\mathsf{F}}$  is realisable:  $W_{S,k}^{\mathsf{F}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \}.$ 

L2: 
$$W_{S,k}^{\mathsf{F}}$$
 is realisable iff  $W_{S,k}^{\mathsf{QF}}$  is realisable:  
 $W_{S,k}^{\mathsf{QF}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) : \bar{a}_T \otimes \bar{a}_S \in \mathsf{QFEAS} \}.$ 

Proof idea.  $W^{QF}$  is realisable  $\iff W^{F}$  is realisable By contradiction. Suppose T realises but not  $W^{QF}$ . Show that  $T \neq W^{QF} \implies T \neq W^{F}$ : Tn  $\overline{W^{QF}} \neq \emptyset$  $\overline{W^{-reg}} \implies \exists lasso: \overline{a}_{T} \otimes \overline{a}_{S} \in QFEAS$  $\widehat{L} \in L(\overline{S_{synt}})$ 

L1: S is realisable by k-reg transducer iff  $W_{S,k}^{\mathsf{F}}$  is realisable:  $W_{S,k}^{\mathsf{F}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) \colon \bar{a}_T \otimes \bar{a}_S \in \mathsf{FEAS} \}.$ 

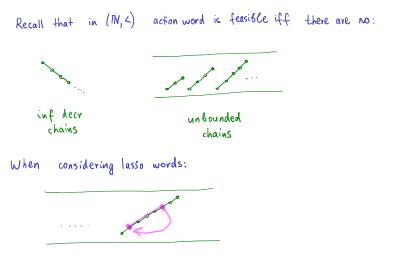
L2: 
$$W_{S,k}^{\mathsf{F}}$$
 is realisable iff  $W_{S,k}^{\mathsf{QF}}$  is realisable:  
 $W_{S,k}^{\mathsf{QF}} = \neg \{ \bar{a}_T \mid \exists \bar{a}_S \in L(\overline{S_{synt}}) : \bar{a}_T \otimes \bar{a}_S \in \mathsf{QFEAS} \}.$ 

Proof idea.  $W^{QF}$  is realisable  $\iff W^{F}$  is realisable By contradiction. Suppose T realises but not  $W^{QF}$ . Show that  $T \neq W^{QF} \implies T \neq W^{F}$ : T  $\cap W^{QF} \neq \emptyset$  $W^{-reg} \implies \exists lasso: \bar{a}_{T} \otimes \bar{a}_{S} \in QFEAS \implies \bar{a}_{T} \otimes \bar{a}_{S} \in FEAS$  $\hat{L} \in L(\overline{S_{synt}}) \iff \bar{a}_{T} \in W^{F}$  DOMAIN  $(\mathbb{N}, <)$  is regapprox.

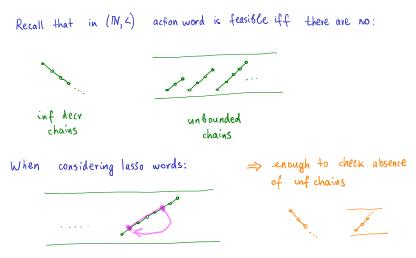
Recall that in (IN, L) action word is feasible iff there are no:

chains

n bounder chains DOMAIN  $(\mathbb{N}, <)$  is regapprox.



DOMAIN  $(\mathbb{N}, <)$  is regapprox.



# MAIN THEOREM

Reg-bounded synthesis in  $(\mathbb{N}, <)$  is solvable in time exp(exp(r,k), n, c)for every given universal parity register automaton

with r registers, n states, c priorities, and bound k.

A similar complexity holds for domains  $(\mathbb{Q}, <)$  and  $(\mathbb{D}, =)$ .

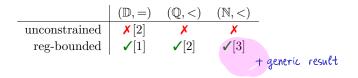
#### REDUCTION BETWEEN DOMAINS

If  $\mathcal{D}$  reduces to  $\mathcal{D}'$ , and  $\mathcal{D}'$  is regapprox, then D is regapprox.

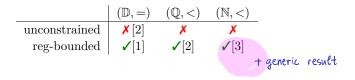
Two definitions of reductions: define word in D ~>> action words in D' - via transducer relations, feas => 3 feas - via first-order formulas.

Allows us to state decidability of register-bounded synthesis for  $(\mathbb{N}^d, <^d)$  and  $(\Sigma^*, \prec)$ .

### CONCLUSION



### CONCLUSION



Experiments (fresh)

| TO = 3600 seconds |                                   |                           |                                 |
|-------------------|-----------------------------------|---------------------------|---------------------------------|
|                   | translation time<br>(Q,<)   (D,=) | # states<br>(Q,<)   (D,=) | synthesis time<br>(Q,<)   (D,=) |
| buffer 1          | 0   0                             | 40   16                   | 0   0                           |
| buffer 2          | 1 0                               | 301   61                  | 10   1                          |
| buffer 3          | 36   0                            | 2706   261                | TO   17                         |
| buffer 4          | 1241   11                         | 28099   1219              | то   то                         |
| buffer 5          | TO   164                          | 6140                      |                                 |
| buffer 6          | TO   2497                         | 33121                     |                                 |
| buffer 7          | то   то                           |                           |                                 |

## STORY OF REGISTER-BOUNDED SYNTHESIS

- 2014: R.Ehlers, S.Seshia, H.Kress-Gazit: Synthesis with Identifiers
- 2018: A.K., B.Maderbacher, R.Bloem: Bounded Synthesis of Register Transducers
- 2019: A.K., O.Kupferman: Register-bounded Synthesis

L.Exibard, E.Filiot, P-A.Reynier: Synthesis of Data Word Transducers

- 2021: L.Exibard, E.Filiot, A.K.: Church Synthesis on Register Automata over Linearly Ordered Data Domains
- 2022: L.Exibard, E.Filiot, A.K.:

Generic Solution to Register-bounded Synthesis