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Church’s Synthesis Problem

i0o0i1o1... ∈ (I · O)ω

Synthesis problem:
given: specification ⊆ (I · O)ω

return: system whose every interaction ∈ spec, else unrealizable



Synthesis Timeline

1962: Church’s synthesis problem
1969: solved by RBL
1977: LTL introduced by Pnueli
1988: Safra’s construction
1989: LTL synthesis is 2EXPTime-complete (PR)
2004: GR(1) synthesis (PPS) impressive scalability

.....................
Other approaches: safraless, bounded, anti-chain, safrafull, strix ...



Generalized Reactivity (1) Synthesis

GR(1)-safety + GR(1)-liveness
G(r ∧ g → X¬g) GFr → GFg

(symbolic)
arena

symbolic game with GR(1) objective
V

i GF... → V
i GF...
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Our Problem: Symbolic Games with LTL Objectives

Given a symbolic game with LTL objective. Who wins the game?

Game = (API , APO , V , v0, δ : V ×2API ×2APO ⇀ V , ObjLTL)
The symbolic representation should support:
– operations of union and conjunction on sets of label-vertex pairs
– enforceable predecessor : given a subset Φ of 2AP×V it returns

(Φ) = {v ∈ V | ∀i .∃o : (i ∪ o, δ(v , i , o)) ∈ Φ}
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Our Approach to Solving Symbolic Games for LTL

■ utilizes the canonical language representation COCOA of [ES]

■ is as fast as GR(1) approach: ■ outperforms folklore approach:
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GR(1) Synthesis Approach

ΦGR(1)
↓

fixpoint formula
↓

evaluate it on the game graph



Folklore Approach to Symbolic LTL Games

ΦLTL
↓

parity automaton
↓

fixpoint formula
↓

evaluate it on the game graph



Our Approach to Symbolic LTL Games

ΦLTL
↓

parity automaton
↓

COCOA
↓ insight 1

alternating GFG
parity automaton

↓ insight 2
fixpoint formula

↓
evaluate it on the game graph



Canonical Chain of Co-Büchi Automata (COCOA)
A chain of co-Büchi representation of an ω-regular language L is a chain
L1 ⊃ ... ⊃ Ln of co-Büchi languages such that a word w belongs to L if
and only if the highest index i s.t. w ∈ L i is even or no such i exists.

Σω : L1 = ∅
∅ : (L1 = Σω) ⊃ (L2 = ∅)
GFa: (L1 = L(FGa)) ⊃ (L2 = ∅)
FGa: (L1 = Σω) ⊃ (L2 = L(FGa)) ⊃ (L3 = ∅)
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Canonical Chain of Co-Büchi Automata (COCOA)
A chain of co-Büchi representation of an ω-regular language L is a chain
L1 ⊃ ... ⊃ Ln of co-Büchi languages such that a word w belongs to L if
and only if the highest index i s.t. w ∈ L i is even or no such i exists.

[ES] defined a canonical separation into such a chain.
[AK] defined a canonical form of GFG co-Büchi automata.
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COCOA → Alternating GFG Automaton

A =
�
Σ, Q, q0, δ : Q×Σ → 2Q ×N×{rej, acc}

�

Alternating automaton:
a word w is accepted by A iff
the acceptor has a strategyw
for resolving its nondeterminism
to produce a winning play.

GFG :
the acceptor has a uniform strategy,
which does not know the whole word
(only the current prefix).
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xu:1
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x :0
rej

yu:2
rej

yu:1
acc

y :0
rej

In general, the product size is within one exponent of the size of the parity automaton.
However, since our parity automata come from LTL, the product size is within POLY.
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Evaluation
– parameterized benchmarks: LIFT, AMBA, ROBOT
– prototype tool Reboot

Fixpoint evaluation performance:
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Conclusion
Problem: Given a symbolic game with LTL objective. Who wins the game?


