Two Synthesis Approaches for CTL*

Roderick Bloem¹, <u>Ayrat Khalimov¹</u>, Sven Schewe²

LTL/CTL* synthesis problem

Specification:

- LTL formula: $G(r \rightarrow F g)$
- Inputs: *r*, outputs: *g*

Find a state machine with such inputs/outputs that satisfies the formula.

LTL/CTL* synthesis problem

Specification:

- CTL* formula: $AG(r \rightarrow F g) \land AGEF \neg g$
- Inputs: r, outputs: g

Find a state machine with such inputs/outputs that satisfies the formula.

Talk outline

- SMT-based bounded CTL* synthesis
 - "model checking, but with unknown system functions" (bounded synthesis)
- Reducing CTL* synthesis to LTL synthesis
 - explicit models
- Conclusion

CTL* synthesis: approach #1

bottom-up CTL model checking with uninterpreted functions*

- Encode CTL* *model checking* into SMT
 - the query is satisfiable iff the system is correct
- Replace the known system with UFs
 - possible if we bound the number of system states

Encoding CTL* model checking into SMT

$$p_A$$

 $system \models AG EFG\overline{g}$
 p_E

- Proposition for each sub-formula
- For every *s* and sub-formula ϕ , encode into SMT " $p_{\phi}(s) \rightarrow s \models \phi$ "
 - $\begin{array}{l} -p_A(s) \rightarrow s \vDash AGp_E \\ -p_E(s) \rightarrow s \vDash EFG\overline{g} \end{array}$

How to encode into SMT?

- Require $p_{top}(s_0) = true$
 - $p_A(s_0) = true$

Encode $s \models E\varphi$ into SMT

- Build the product graph system \times automaton $_{\varphi}$
 - Buchi automaton
- $s \models E\varphi \iff$ the product has an accepting path
- Buchi ranking
 - exit normal state: <
 - exit accepting state: reset
- SMT query is satisfiable iff the product is accepting

From model checking to synthesis

• SMT constraints look like this:

 $\bigwedge_{s \in S, r \in B} rch(q, s) \wedge grant(s) \rightarrow rch(q, \tau(s, r)) \wedge \rho(q, s) > \rho(q', \tau(s, r))$

To do synthesis, replace given system functions
 (grant and τ) with uninterpreted functions!

CTL* synthesis: approach #2 reduce CTL* synthesis to LTL synthesis

- Overcome the bounded synthesis limitation
 - efficiently handle unrealizable CTL*
- + Avoid building specialized CTL* synthesizers
- **+-** Be fast by using state-of-the-art LTL synthesizers

Idea of reduction CTL* -> LTL

- Synthesize *explicit* models
 - for each sub-formula $A\varphi$ or $E\varphi$, introduce new system outputs $p_{A\varphi}$ or $p_{E\varphi}$
 - for each $E\varphi$, introduce direction-output $d_{E\varphi}$ that encodes system path that satisfies φ
- LTL formula says:
 - $\mathbf{G}(p_{A\varphi} \rightarrow \varphi)$
 - " $G(p_{E\varphi} \rightarrow (Gd_{E\varphi} \rightarrow \varphi))$ " (roughly)
 - The top-level proposition holds initially

Example

• The top-level proposition holds initially

•
$$\mathbf{G}(p_{A\varphi} \to \varphi)$$

- " $\mathbf{G}(p_{E\varphi} \rightarrow (\mathbf{G}d_{E\varphi} \rightarrow \varphi))$ " (roughly)
- $\Phi_{CTL*} = EX(g \land F\overline{g})$, inputs={r}, outputs={g}
- inputs={r}, outputs={g, p, d} $\Phi_{LTL} = p \land G(p \rightarrow Gd \rightarrow X(g \land F\overline{g}))$

Counterexample to 'rough' E& reduction

•
$$\boldsymbol{\Phi}_{CTL*} = \operatorname{AG}\operatorname{EX}(\boldsymbol{g} \wedge F\overline{\boldsymbol{g}})$$

• outputs=
$$\{g, p_A, p, d\}$$

• $\Phi_{LTL} = p_A \wedge G(p_A \rightarrow Gp) \wedge G(p \rightarrow Gd \rightarrow X(g \wedge F\overline{g}))$

Correct translation of E-formulas

- For each $E\varphi$, add outputs $d_1, \dots, d_{|Q|}, v: \{0 \dots |Q|\}$
- Add LTL formula:

$$\bigwedge_{i \in \{1 \dots |Q|\}} \mathbf{G} [v_{E\varphi} = i \rightarrow (\mathbf{G}d_i \rightarrow \varphi)]$$

Example

• $\Phi_{CTL*} = AGEX(g \land F\overline{g})$ • outputs= $\{g, p_A, v: \{0 \dots 4\}, d_1, d_2, d_3, d_4\}$ $\Phi_{LTL} = p_A \land G(p_A \rightarrow Gv \neq 0) \land$ $\bigwedge_{i \in \{1 \dots 4\}} G(v = i \rightarrow Gd_i \rightarrow X(g \land F\overline{g}))$

CTL* via LTL synthesis: summary

• For each sub-formula
$$E\varphi$$
:

$$\bigwedge_{i \in \{1...|Q|\}} \mathbf{G} \begin{bmatrix} v_{E\varphi} = i & \rightarrow & (\mathbf{G}d_i \rightarrow \varphi') \end{bmatrix} \quad (1)$$
• For each sub-formula $A\varphi$:

$$\mathbf{G} \begin{bmatrix} p_{A\varphi} & \rightarrow & \varphi' \end{bmatrix} \quad (2)$$
• The LTL formula is

$$\bigwedge_{\mathbf{E}\varphi} Eq. 1 \land \bigwedge_{A\varphi} Eq. 2 \land \Phi'$$

- Φ_{LTL} is realizable $\Leftrightarrow \Phi_{CTL^*}$ is realizable
- $|\Phi_{LTL}| \approx 2^{|\Phi_{CTL*}|}$
- Yet the synthesis complexity stays in 2EXPTIME
- Systems can get larger
- Experiments: faster when the # of E-formulas is small

Conclusion

SMT-based bounded CTL* synthesis

• For each sub-formula $E\varphi$: $\bigwedge_{i \in \{1...|Q|\}} \mathbf{G} [v_{E\varphi} = i \rightarrow (\mathbf{G}d_i \rightarrow \varphi')] \quad (1)$

- For each sub-formula $A\varphi$: **G**[$p_{A\varphi} \rightarrow \varphi'$] (2)
- The LTL formula is

 $\bigwedge_{\mathbf{E}\varphi} Eq. 1 \wedge \bigwedge_{A\varphi} Eq. 2 \wedge \Phi'$

Future directions:

- How to establish unrealizability of CTL*?
- Synthesizers for ATL*
- Satisfiability of CTL*