
Two Synthesis Approaches
for CTL*

Roderick Bloem1, Ayrat Khalimov1, Sven Schewe2

Rigorous Systems Engineering

1 1 2

LTL/CTL* synthesis problem

Specification:

• LTL formula: 𝑮(𝑟 → 𝑭 𝑔)

• Inputs: 𝑟, outputs: 𝑔

Find a state machine with such inputs/outputs

that satisfies the formula.

2

¬𝑔

𝑟

𝑔 ¬𝑟

𝑟 ¬𝑟

An example solution

¬𝑔

𝑟

𝑔 ¬𝑟

1

Another solution

LTL/CTL* synthesis problem

Specification:

• CTL* formula: 𝑨𝑮 𝑟 → 𝑭 𝑔 ∧ 𝑨𝑮𝑬𝑭¬𝑔

• Inputs: 𝑟, outputs: 𝑔

Find a state machine with such inputs/outputs

that satisfies the formula.

3

¬𝑔

𝑟

𝑔 ¬𝑟

𝑟 ¬𝑟

An example solution

¬𝑔

𝑟

𝑔 ¬𝑟

1

Another solution

Talk outline

• SMT-based bounded CTL* synthesis

- “model checking, but with unknown system functions”
(bounded synthesis)

• Reducing CTL* synthesis to LTL synthesis

- explicit models

• Conclusion

4

CTL* synthesis: approach #1

• Encode CTL* model checking into SMT

- the query is satisfiable iff the system is correct

• Replace the known system with UFs

- possible if we bound the number of system states

5

bottom-up CTL* model checking with uninterpreted functions

Encoding 𝑪𝑻𝑳∗ model checking into SMT

• Proposition for each sub-formula

• For every 𝑠 and sub-formula 𝜙, encode into SMT
“𝑝𝜙 𝑠 → 𝑠 ⊨ 𝜙”

- 𝑝𝐴 𝑠 → 𝑠 ⊨ 𝐴𝐺𝑝𝐸

- 𝑝𝐸 𝑠 → 𝑠 ⊨ 𝐸𝐹𝐺𝑔

• Require 𝑝𝑡𝑜𝑝 𝑠0 = 𝑡𝑟𝑢𝑒

- 𝑝𝐴 𝑠0 = 𝑡𝑟𝑢𝑒

𝒔𝒚𝒔𝒕𝒆𝒎 ⊨ 𝐀𝐺 𝐄𝐹𝐺𝑔
𝒑𝑬

𝒑𝐀

How to encode into SMT?

• Build the product graph 𝑠𝑦𝑠𝑡𝑒𝑚 × 𝑎𝑢𝑡𝑜𝑚𝑎𝑡𝑜𝑛𝜑

• Buchi automaton
• 𝑠 ⊨ 𝐸𝜑 ⇔ the product has an accepting path
• Buchi ranking

• exit normal state: <
• exit accepting state: reset

• SMT query is satisfiable
 iff the product is accepting

1

<

<

𝐫𝐞𝐬𝐞𝐭

Encode 𝒔 ⊨ 𝑬𝝋 into SMT

3

2

3

From model checking to synthesis

 𝑟𝑐ℎ 𝑞, 𝑠 ∧ 𝒈𝒓𝒂𝒏𝒕 𝑠 →
 𝑟𝑐ℎ 𝑞, 𝝉 𝑠, 𝑟 ∧ 𝜌(𝑞, 𝑠) > 𝜌(𝑞′, 𝝉(𝑠, 𝑟))

8

𝑠∈𝑆, 𝑟∈𝐵

• To do synthesis, replace given system functions
(𝒈𝒓𝒂𝒏𝒕 and 𝝉) with uninterpreted functions!

• SMT constraints look like this:

CTL* bounded synthesis: summary

- bad at establishing

 CTL* unrealizability

9

CTL* Φ,
inputs,
outputs

build SMT query
where 𝝉, 𝒐𝒖𝒕 are

uninterpreted

YES

NO

unrealizable

YES
NO

system
𝝉, 𝒐𝒖𝒕

𝑆 = {𝑠0}

SMT solve

automata

𝑆 > 22
|Φ|

?

𝑒𝑥𝑡𝑒𝑛𝑑 𝑆

CTL* synthesis: approach #2

• Overcome the bounded synthesis limitation

- efficiently handle unrealizable CTL*

• Avoid building specialized CTL* synthesizers

• Be fast by using state-of-the-art LTL synthesizers

10

reduce CTL* synthesis to LTL synthesis

+
+-

-

Idea of reduction CTL* -> LTL

• Synthesize explicit models

- for each sub-formula 𝐴𝜑 or 𝐸𝜑, introduce new
system outputs 𝑝𝐴𝜑 or 𝑝𝐸𝜑

- for each 𝐸𝜑, introduce direction-output 𝑑𝐸𝜑

 that encodes system path that satisfies 𝜑

• LTL formula says:

- 𝐆 𝑝𝐴𝜑 → 𝜑

- "𝐆 𝑝𝐸𝜑 → 𝐆𝑑𝐸𝜑 → 𝜑 " (roughly)

- The top-level proposition holds initially

11

Example

• 𝚽𝐂𝐓𝐋∗ = 𝐄𝐗 𝑔 ∧ 𝐅𝑔 , inputs={r}, outputs={g}

• inputs={r}, outputs={𝑔, 𝑝, 𝑑}
𝚽𝐋𝐓𝐋 = 𝒑 ∧ 𝑮(𝒑 → 𝑮𝒅 → 𝑿 𝒈 ∧ 𝑭𝒈)

12

• The top-level proposition holds initially

• 𝐆 𝑝𝐴𝜑 → 𝜑

• "𝐆 𝑝𝐸𝜑 → 𝐆𝑑𝐸𝜑 → 𝜑 " (roughly)

𝑝
𝑑 = 𝑟

𝑑 = 𝑟

Counterexample to ‘rough’ Eφ reduction

• 𝜱𝑪𝑻𝑳∗ = 𝐀𝐆 𝐄𝐗 𝒈 ∧ 𝑭𝒈

• outputs={𝑔, 𝑝𝐴, 𝑝, 𝑑}
𝜱𝑳𝑻𝑳 = 𝒑𝑨 ∧ 𝑮 𝒑𝑨 → 𝑮𝒑 ∧

 𝑮(𝒑 → 𝑮𝒅 → 𝑿 𝒈 ∧ 𝑭𝒈)

13

𝑝𝐴
𝑝
𝑑 = 𝑟

𝑝
𝑑 =? ?

• For each 𝐸𝜑, add outputs 𝑑1, … , 𝑑|𝑄|, 𝑣: {0… |𝑄|}

• Add LTL formula:

 𝐆[𝑣𝐸𝜑 = 𝑖 → 𝐆𝑑𝑖 → 𝜑]

𝒊∈{𝟏… 𝑸 }

14

Correct translation of E-formulas

Example

• 𝜱𝑪𝑻𝑳∗ = 𝑨𝑮𝑬𝑿 𝒈 ∧ 𝑭𝒈

• outputs={𝑔, 𝑝𝐴, 𝑣: {0…4}, 𝑑1, 𝑑2, 𝑑3, 𝑑4}
𝚽𝑳𝑻𝑳 = 𝒑𝑨 ∧ 𝑮 𝒑𝑨 → 𝑮𝒗 ≠ 𝟎 ∧

 𝑮(𝒗 = 𝒊 → 𝑮𝒅𝒊 → 𝑿 𝒈 ∧ 𝑭𝒈)

𝒊∈{𝟏…𝟒}

15

𝑔 𝑔 𝑔

𝑣 = 𝟏
𝒅𝟏 = 𝒓

𝑣 = 𝟐
𝒅𝟏 = 𝒓, 𝒅𝟐 = 𝒓

𝑣 =1
𝒅𝟏 = 𝒓, 𝒅𝟐 = 𝒓

𝑟, 𝑟 𝑟

𝑟 𝑟

𝑟

𝑝𝐴

• Φ𝐿𝑇𝐿 is realizable  Φ𝐶𝑇𝐿∗ is realizable

• Φ𝐿𝑇𝐿 ≈ 2
|Φ𝐶𝑇𝐿∗|

• Yet the synthesis complexity stays in 2EXPTIME

• Systems can get larger

• Experiments: faster when the # of E-formulas is small

 16

CTL* via LTL synthesis: summary

Conclusion

Future directions:

• How to establish unrealizability of CTL*?

• Synthesizers for ATL*

• Satisfiability of CTL*
17

SMT-based bounded CTL* synthesis CTL*-via-LTL synthesis

