Register-Bounded Synthesis

Ayrat Khalimov Universite libre de Bruxelles Belgium Orna Kupferman Hebrew University Israel

	DRA	NRA	URA	NRA_{tf}
Bounded Synthesis	EXPSPACE	Undecidable $(k \ge 1)$	2ExpTime	2ExpTime
	(Thm. 13)	(Thm. 3)	([9] and Thm. 12)	(Thm. 16)
General Case	EXPSPACE	Undecidable	Undecidable	Open
	(Thm. 6)	(Thm. 2)	(Thm. 4)	

Why study *bounded* synthesis from *universal* automata?

why register-bounded synthesis?

- Not a limitation: designer usually knows the sensible bound on the number of registers
- Added benefit: small programs

why universal register automata?

All computations $(in_0, out_0) (in_1, out_1) (in_2, out_2) \dots$ satisfy a given specification.

why universal register automata?

All computations $(in_0, out_0) (in_1, out_1) (in_2, out_2) \dots$ satisfy a given specification. Most specifications are derived from arbiter: $\forall d \in D: \mathbf{G}(req \land i = d \rightarrow \mathbf{X} \mathbf{F}(grant \land o = d))$

why universal register automata?

system

All computations $(in_0, out_0) (in_1, out_1) (in_2, out_2) \dots$ satisfy a given specification. Most specifications are derived from arbiter: $\forall d \in D: \mathbf{G}(req \land i = d \rightarrow \mathbf{X} \mathbf{F}(grant \land o = d))$ Universal register automata *can* express this. Nondeterministic -- cannot.

universal register automaton

- Works on words in $(\Sigma \times D \times D)^{\omega}$
- Registers $R = \{r_1, \dots, r_{k_A}\}$, initialized v_0
- Transition function $Q \times \Sigma \times Tst_i \times Tst_o \rightarrow 2^{Q \times Asgn}$

Arbiter specification (coBuchi)

universal register automaton

- Word: $\binom{req,1}{\neg grant,0} \binom{\neg req,2}{grant,1} \binom{\neg req,3}{\neg grant,1} \dots$
- Run-graph:

graph:

$$(q_0, 0) \leftarrow (q_0, 0) \leftarrow (q_1, 1) \leftarrow ($$

register transducer

- Reads a letter in $\Sigma_I \times D$
- Outputs a letter in $\Sigma_0 \times D$
- Registers $R = \{r_1, \dots, r_{k_s}\}$, initialized with v_0
- Transition function $S \times \Sigma_I \times Tst_i \rightarrow S \times \Sigma_O \times R \times Asgn$

arbiter

- Input: (*req*, 1)(¬*req*, 2)(¬*req*, 3) ...
- Run: $(s_0, 0) \xrightarrow{\neg g, 0} (s_1, 1) \xrightarrow{g, 1} (s_0, 1) \xrightarrow{\neg g, 1} (s_0, 1) \longrightarrow$

bounded synthesis problem

Given:

- Σ_I , Σ_O
- universal register automaton A over $\Sigma_I \times \Sigma_O \times D \times D$
- the number k_s of system registers

Return:

• k_s -register transducer T such that $T \vDash A$, or "unrealizable"

Bounded synthesis problem is solvable in EXP in |Q| and k_s , and 2EXP in k_A .

abstraction A'

 $T: S \times \Sigma_I \times Tst_i^S \to S \times \Sigma_O \times R_s \times Asgn_s$ $T': S \times \Sigma'_I \longrightarrow S \times \Sigma'_O$ $\begin{array}{c|c} \Sigma_{\mathrm{I}} \longrightarrow & \longrightarrow \Sigma_{0} \\ Tst_{i}^{s} \longrightarrow & T' & \longrightarrow Asgn_{s} \\ & \longrightarrow R_{s} \end{array}$ We construct register-less automaton A' with $Q' \times (\Sigma'_I \times \Sigma'_Q) \to 2^{Q'}$ such that $T' \vDash A'$ iff $T \vDash A$ for every T or T'.

 $(q_0, r_A \neq r_T)$

Two possibilities:

- $i = r_T$
- $i \neq r_T$

 $(q_0, r_A \neq r_T)$

Two possibilities:

• $i = r_T$ • $i \neq r_T$

bisimulation property of the abstraction

bisimulation property of the abstraction

- For every T or T': $T' \vDash A'$ iff $T \vDash A$
- Recall that synthesis is EXP in |Q'|
- $Q' = Q \times \Pi$, where Π is the set of partitions of $R = R_s \cup R_A$
- $|\Pi|$ is EXP in $(k_s + k_A)$
- => synthesis is 2EXP in k_s and k_A

But system partitions behave deterministically => only **EXP** in k_s

Part 2

Environments have their own limits. Let them be register transducers.

 $env||sys = (in_0, out_0)(in_1, out_1) \dots$

Note: the number of values is at most $k_s + k_e$.

env-sys-bounded synthesis problem

Given:

- Σ_I , Σ_O
- universal register automaton A with Σ_I and Σ_O
- the number k_s of system registers
- **the number** *k*_{*e*} **of environment registers** Return:
- k_s-register transducer sys such that env||sys ⊨ A for every k_e-register environment, or "unrealizable"

Env-sys-bounded synthesis problem is solvable in EXP in |Q| and k_s , 2EXP in k_A and k_e .

idea of the abstraction

conclusion

- Cleaner algorithm
 => tighter complexity analysis (only EXP in k_s)
- Solution to the environment-system-bounded synthesis problem

- In the full version:
- Non-determinacy
- Hierarchy of system and environment power