
Register-Bounded Synthesis

 Ayrat Khalimov Orna Kupferman

 Universite libre de Bruxelles Hebrew University
 Belgium Israel

Why study bounded synthesis from

universal automata?

why register-bounded synthesis?

• Not a limitation: designer usually knows the
sensible bound on the number of registers

• Added benefit: small programs

why universal register automata?

All computations
(𝑖𝑛0, 𝑜𝑢𝑡0) (𝑖𝑛1, 𝑜𝑢𝑡1) (𝑖𝑛2, 𝑜𝑢𝑡2) …

satisfy a given specification.

system

why universal register automata?

All computations
(𝑖𝑛0, 𝑜𝑢𝑡0) (𝑖𝑛1, 𝑜𝑢𝑡1) (𝑖𝑛2, 𝑜𝑢𝑡2) …

satisfy a given specification.

Most specifications are derived from arbiter:
∀𝑑 ∈ 𝐷: 𝐆(𝑟𝑒𝑞 ∧ 𝑖 = 𝑑 → 𝐗 𝐅(𝑔𝑟𝑎𝑛𝑡 ∧ 𝑜 = 𝑑))

system

why universal register automata?

All computations
(𝑖𝑛0, 𝑜𝑢𝑡0) (𝑖𝑛1, 𝑜𝑢𝑡1) (𝑖𝑛2, 𝑜𝑢𝑡2) …

satisfy a given specification.

Most specifications are derived from arbiter:
∀𝑑 ∈ 𝐷: 𝐆(𝑟𝑒𝑞 ∧ 𝑖 = 𝑑 → 𝐗 𝐅(𝑔𝑟𝑎𝑛𝑡 ∧ 𝑜 = 𝑑))

Universal register automata can express this.

Nondeterministic -- cannot.

system

universal register automaton

• Works on words in Σ × 𝐷 × 𝐷 𝜔

• Registers 𝑅 = {𝑟1, … , 𝑟𝑘𝐴
}, initialized 𝑣0

• Transition function
𝑄 × Σ × 𝑇𝑠𝑡𝑖 × 𝑇𝑠𝑡𝑜 → 2𝑄×𝐴𝑠𝑔𝑛

Arbiter specification (coBuchi)

universal register automaton

• Word: 𝑟𝑒𝑞,1
¬𝑔𝑟𝑎𝑛𝑡,0

¬𝑟𝑒𝑞,2
𝑔𝑟𝑎𝑛𝑡,1

¬𝑟𝑒𝑞,3
¬𝑔𝑟𝑎𝑛𝑡,1

…

• Run-graph:

𝑞0, 0
𝑞0, 0

𝑞0, 0

𝑞1, 1
𝑞0, 0

register transducer

• Reads a letter in Σ𝐼 × 𝐷

• Outputs a letter in Σ𝑂 × 𝐷

• Registers 𝑅 = {𝑟1, … , 𝑟𝑘𝑠
}, initialized with 𝑣0

• Transition function
𝑆 × Σ𝐼 × 𝑇𝑠𝑡𝑖 → 𝑆 × Σ𝑂 × 𝑅 × 𝐴𝑠𝑔𝑛

arbiter

• Input: 𝑟𝑒𝑞, 1 ¬𝑟𝑒𝑞, 2 ¬𝑟𝑒𝑞, 3 …

• Run: (s0, 0)
¬𝑔,0

𝑠1, 1
𝑔,1

𝑠0, 1
¬𝑔,1

𝑠0, 1 …

bounded synthesis problem

Given:

• Σ𝐼, Σ𝑂

• universal register automaton 𝐴 over Σ𝐼 × Σ𝑂 ×
𝐷 × 𝐷

• the number 𝑘𝑠 of system registers

Return:

• 𝑘𝑠-register transducer 𝑇 such that 𝑇 ⊨ 𝐴, or
“unrealizable”

Bounded synthesis problem is solvable in
EXP in 𝑄 and 𝑘𝑠, and 2EXP in 𝑘𝐴.

abstraction 𝑨′

𝑇: 𝑆 × Σ𝐼 × 𝑇𝑠𝑡𝑖

𝑠 → 𝑆 × Σ𝑂 × 𝑅𝑠 × 𝐴𝑠𝑔𝑛𝑠
𝑇′: 𝑆 × Σ𝐼

′ → 𝑆 × Σ𝑂
′

We construct register-less automaton 𝐴′ with

𝑄′ × Σ𝐼
′ × Σ𝑂

′ → 2𝑄′

such that

𝑇′ ⊨ 𝐴′ iff 𝑇 ⊨ 𝐴

for every 𝑇 or 𝑇′.

𝚺𝐈

𝑻𝒔𝒕𝒊
𝒔

𝑨𝒔𝒈𝒏𝒔

𝚺𝑶
𝑻′

𝑹𝒔

abstracting a single transition

abstracting a single transition

2
2

2
2

2

abstracting a single transition

2
2

2
2

2
1

1
1

abstracting a single transition

abstracting a single transition

abstracting a single transition

Two possibilities:
• 𝑖 = 𝑟𝑇
• 𝑖 ≠ 𝑟𝑇

abstracting a single transition

Two possibilities:
• 𝑖 = 𝑟𝑇
• 𝑖 ≠ 𝑟𝑇

abstracting a single transition

one 𝑡𝑠𝑡𝑠 can induce several 𝑡𝑠𝑡𝐴

bisimulation property of the abstraction

𝑞, 𝜋
𝑡𝑠𝑡𝑖

𝑠, 𝑟𝑠, 𝑎𝑠𝑔𝑛𝑠 𝑞′, 𝜋′
transition
of 𝐴′ and
some 𝑇′

𝑞, 𝑣𝐴, 𝑣𝑠
𝒊, 𝒐

𝒒′, 𝒗𝑨
′ , 𝒗𝒔

′

transition
of 𝐴 and
some 𝑇

bisimulation property of the abstraction

𝑞, 𝜋
𝒕𝒔𝒕𝒊

𝒔, 𝒓𝒔, 𝒂𝒔𝒈𝒏𝒔 𝒒′, 𝝅′
transition
of 𝐴′ and
some 𝑇′

𝑞, 𝑣𝐴, 𝑣𝑠
𝑖, 𝑜

𝑞′, 𝑣𝐴
′ , 𝑣𝑠

′

transition
of 𝐴 and
some 𝑇

• For every 𝑇 or 𝑇′: 𝑇′ ⊨ 𝐴′ iff 𝑇 ⊨ 𝐴

• Recall that synthesis is EXP in |𝑄′|

• 𝑄′ = 𝑄 × Π, where Π is the set of partitions of
𝑅 = 𝑅𝑠 ∪ 𝑅𝐴

• Π is EXP in (𝑘𝑠 + 𝑘𝐴)

=> synthesis is 2EXP in 𝑘𝑠 and 𝑘𝐴

But system partitions behave deterministically
=> only EXP in 𝒌𝒔

Part 2

Environments have their own limits.

Let them be register transducers.

𝑒𝑛𝑣||𝑠𝑦𝑠 = 𝑖𝑛0, 𝑜𝑢𝑡0 𝑖𝑛1, 𝑜𝑢𝑡1 …

system
register

transducer

environ
ment
register

transducer

 Note: the number of values is at most 𝑘𝑠 + 𝑘𝑒.

env-sys-bounded synthesis problem

Given:

• Σ𝐼, Σ𝑂

• universal register automaton 𝐴 with Σ𝐼 and Σ𝑂

• the number 𝑘𝑠 of system registers

• the number 𝒌𝒆 of environment registers

Return:

• 𝑘𝑠-register transducer 𝑠𝑦𝑠 such that
𝑒𝑛𝑣||𝑠𝑦𝑠 ⊨ 𝐴 for every 𝑘𝑒-register environment,
or “unrealizable”

Env-sys-bounded synthesis problem is solvable
in EXP in |𝑄| and 𝑘𝑠, 2EXP in 𝑘𝐴 and 𝒌𝒆.

idea of the abstraction

𝑞0, 𝑟𝐴 = 𝑟𝑇 = 𝑟𝑒

(𝑠𝑡𝑜𝑟𝑒𝑒)

𝑞0, 𝑟𝐴 = 𝑟𝑇 = 𝑟𝑒 𝑞0, 𝑟𝐴 = 𝑟𝑇 ≠ 𝑟𝑒 similarly…

conclusion

• Cleaner algorithm

=> tighter complexity analysis (only EXP in 𝑘𝑠)

• Solution to the environment-system-bounded
synthesis problem

In the full version:

• Non-determinacy

• Hierarchy of system and environment power

