Bounded Synthesis of Register Transducers

Roderick Bloem¹, **Ayrat Khalimov**¹[¢], Benedikt Maderbacher¹ ¹ TU Graz & ARiSE, Austria [☆] Hebrew University, Israel

path to synthesis

synthesis

determinization

inversata emptiness

Motivation

Synthesize readable programs. "Every msg∈ {0, ...,3} should be X-output":

Motivation

Synthesize readable programs.

- Programs separate data/control, but synthesizers do not distinguish. This:
 - makes programs unreadable
 - doesn't scale
 - doesn't work for infinite data domains
- => handle data directly in synthesis

Register Transducers

- Reads a word in $(2^I \times D)^{\omega}$
- Outputs a word in $(2^O \times D)^{\omega}$

$$T = (I, O, S, R, s_0, \tau)$$

- Boolean inputs *I* and outputs *O*
- States S; s_0 is initial
- Registers $R = \{r_1, \dots, r_{k_s}\}$, all initialized to d_0
- $\tau: S \times 2^{I} \times B^{k_{s}} \to S \times 2^{O} \times \{1, \dots, k_{s}\} \times B^{k_{s}}$

Arbiter (1-Register Transducer) $i = z \wedge \frac{req}{\neg grant}$

- Input: $(req, 1)(\neg req, 2)(\neg req, 3) \dots$
- Run: $(s_0, 0) \xrightarrow{\neg g, 0} (s_1, 1) \xrightarrow{g, 1} (s_0, 1) \xrightarrow{\neg g, 1} (s_0, 1) \longrightarrow$

Register Automata (Universal CoBuchi)

• Works on words in $(2^P \times D \times D)^{\omega}$

$$A = (P, Q, R, q_0, \delta)$$

- *P* are Boolean signals
- States Q; q_0 is initial
- Registers $R = \{r_1, \dots, r_{k_A}\}$, initialized to d_0
- $\delta: Q \times 2^P \times B^{k_A} \times B^{k_A} \to 2^{Q \times B^{k_A}}$

Spec for Arbiter (1-Register Automaton)

 $\forall d \in D: \mathbf{G}(req \land i = d \rightarrow \mathbf{X} \mathbf{F}(grant \land o = d))$

1-Register Automaton

- Word: $\binom{req,1}{\neg grant,0} \binom{\neg req,2}{grant,1} \binom{\neg req,3}{\neg grant,1} \dots$
- Run-graph:

$$(q_0, 0) = (q_0, 0) - (q_0, 0) - (q_0, 0)$$

$$(q_0, 0) = (q_1, 1)$$

Bounded Synthesis Problem

Given:

- *I*, *O*
- register automaton A over I and O
- the number k_s of registers in a system Return:
- k_s-register transducer sys such that sys ⊨ A, or "unrealizable"

Bounded synthesis problem is decidable in $2^{const \cdot |Q| \cdot 2^{(k_A + k_S)^2}}$ time.

Standard approach: A I det A

Standard approach: A I det A

Standard approach: A I det A I find T

Standard approach:

A undecidable
for register
det A automata
find T

Our approach focuses on words generated by k_s -register transducers $A \cdot T^{all}$.

Check rej-emptiness of sys × A

Find a rejecting word in a register automaton

find a rejecting word in register-**less** abstraction (sys × A)@V

$$\begin{array}{ll} (r_1 = r_2)' & \Leftrightarrow & store_1 \wedge store_2 \lor \\ & i = r_1 \wedge store_2 \lor \\ & i = r_2 \wedge store_1 \lor \\ & (r_1 = r_2) \wedge \neg store_1 \wedge \neg store_2 \end{array}$$

- System is not given $(sys \times A)@V$
- We cannot rely on the registers of A, bcz their assignments are universal

Introduce new registers controlled by transducers.

Introduce new registers controlled by transducers.

Abstraction for Synthesis

 $sys \vDash A \Leftrightarrow sys_B \vDash H$

For every
$$A$$
, k_s :
 $\exists sys: sys \models A \iff \exists sys_B: sys_B \models H$

• Time complexity: in $2^{const \cdot |Q| \cdot 2^{(k_A + k_s)^2}}$

Conclusion

- Contributions
 - Decision procedure for bounded synthesis of register transducers from universal register automata
 - (Not presented) Incomplete procedure for bounded synthesis of register transducers from VLTL(EQ)
- Possible future directions
 - lower complexity bound
 - non bounded synthesis
 - richer automata and systems