
CTL*-via-LTL Synthesis Roderick Bloem, Ayrat Khalimov, TU Graz
Sven Schewe, University of Liverpool

Intro & Motivation
CTL* Synthesis Problem
Input: [CTL* or LTL] formula 𝜑, inputs 𝐼, outputs 𝑂
Output: 𝐼/𝑂 machine satisfying 𝜑 or “unrealisable”

CTL* allows the designer to write structural properties,
but LTL synthesizers are prevalent. Hence we want to turn
state-of-the-art LTL synthesizers into CTL* synthesizers.

𝑔 1

LTL
𝐆 𝑟 → 𝐅𝑔

CTL*
A𝐆 𝑟 → 𝐅𝑔 ∧
𝐀𝐆𝐄𝐅𝐆¬𝑔

¬𝑔 𝑔
1

𝑟 this system is
boring

this system is
more interesting

¬𝑟

CTL* specification
𝐼 = 𝑟 , 𝑂 = 𝑔 , 𝜑 = 𝐀𝐆𝐄𝐅𝐆¬𝑔
is translated into LTL specification:
𝐼 = 𝑟 , 𝑂 = 𝑔, 𝑝𝐴𝐺 , 𝑝𝐸𝐹𝐺 , 𝑑𝐸𝐹𝐺 ,
𝜑 = 𝑝𝐴𝐺 ∧ 𝐆 𝑝𝐴𝐺 → 𝐆𝑝𝐸𝐹𝐺 ∧
 𝐆(𝑝𝐸𝐹𝐺 ∧ 𝐆𝑑𝐸𝐹𝐺 → 𝐅𝐆¬𝑔)

1
𝑟

¬𝑟

¬𝑔,
𝑝𝐴𝐺 , 𝑝𝐸𝐹𝐺,
𝑑 = ¬𝑟

𝑔,
¬𝑝𝐴𝐺 , 𝑝𝐸𝐹𝐺,
𝑑 = 𝑎𝑛𝑦

¬𝑟
𝑟

¬𝑟

¬𝑔,
𝑝𝐴, 𝑝𝐸,𝑑 = 𝑟

𝑔,
¬𝑝𝐴, 𝑝𝐸,𝒅 =?

𝑟

¬𝑔 𝑔 𝑔

𝑣 = 𝟏
𝒅𝟏 = 𝒓

𝑣 = 𝟐
𝒅𝟏 = ¬𝒓,
𝒅𝟐 = 𝒓

𝑣 =1
𝒅𝟏 = 𝒓,
𝒅𝟐 = ¬𝒓

1 𝑟

¬𝑟 𝑟

¬𝑟

𝑝𝐴

Reducing to LTL Synthesis
Idea
We will synthesize explicit models:

- for each sub-formula 𝐀𝜑 or 𝐄𝜑,
 introduce new Boolean outputs 𝑝𝐴𝜑 or 𝑝𝐸𝜑

- for each 𝐄𝜑,
 introduce direction-output 𝑑𝐸𝜑 ∈ 2

𝐼

 that encodes path that satisfies 𝜑
LTL formula says:

a) The top-level proposition holds in the initial state

b) 𝐆 𝑝𝐴𝜑 → 𝜑

c) "𝐆 𝑝𝐸𝜑 → 𝐆𝑑𝐸𝜑 → 𝜑 " (roughly*)

*roughly, because one direction-output per sub-formula
might be not enough.

Correct reduction
For each 𝐄𝜑, add outputs 𝑑1, … , 𝑑|𝑄|, 𝑣: {0… |𝑄|},

where 𝑄 are the states of an NBW for 𝜑.
Use (a), (b), but replace (c) with:

 𝐆[𝑣𝐸𝜑 = 𝑖 → 𝐆𝑑𝑖 → 𝜑]

𝒊∈{𝟏… 𝑸 }

|𝑄| number of direction-outputs suffice, because the
(memory-less) verifier can pass through a tree node
in up to |𝑄| different automaton states.

Properties of the Reduction
•𝛷𝐿𝑇𝐿 is realizable 𝛷𝐶𝑇𝐿∗ is realizable
• 𝛷𝐿𝑇𝐿 = 𝐸𝑋𝑃(|𝛷𝐶𝑇𝐿∗|)
• … but the complexity stays in 2EXPTIME
• Systems can get larger
• Experiments: fast when the number of 𝐄 sub-

formulas is small

𝐼 = 𝑟 , 𝑂 = 𝑔 , 𝐀𝐆 𝐄𝐗 𝑔 ∧ 𝐅¬𝑔
becomes
𝐼 = 𝑟 , 𝑂 = 𝑔, 𝑝𝐴, 𝑝𝐸 , 𝑑𝐸

𝑝𝐴 ∧ 𝐆 𝑝𝐴 → 𝐆𝑝𝐸 ∧
𝐆(𝑝𝐸 ∧ 𝐆𝑑𝐸 → 𝐗 𝑔 ∧ 𝐅¬𝑔)

won’t work

