CTL*-via-LTL Synthesis

Intro \& Motivation

CTL* Synthesis Problem
Input: [CTL* or LTL] formula φ, inputs I, outputs O Output: I/O machine satisfying φ or "unrealisable"

CTL* allows the designer to write structural properties, but LTL synthesizers are prevalent. Hence we want to turn state-of-the-art LTL synthesizers into CTL* synthesizers.

LTL
$\mathbf{G}(r \rightarrow \mathbf{F} g)$

this system is boring

CTL*
$\mathbf{A G}(r \rightarrow \mathbf{F} g) \wedge$
AGEFG $\neg g$

this system is more interesting

Reducing to LTL Synthesis Idea

We will synthesize explicit models:

- for each sub-formula $\mathbf{A} \varphi$ or $\mathbf{E} \varphi$, introduce new Boolean outputs $p_{A \varphi}$ or $p_{E \varphi}$
- for each $\mathbf{E} \varphi$,
introduce direction-output $d_{E \varphi} \in 2^{I}$
that encodes path that satisfies φ
LTL formula says:
a) The top-level proposition holds in the initial state
b) $\mathbf{G}\left(p_{A \varphi} \rightarrow \varphi\right)$
c) $\quad \mathrm{G}\left(p_{E \varphi} \rightarrow\left(\mathbf{G} d_{E \varphi} \rightarrow \varphi\right)\right)$ "(roughly*)
*roughly, because one direction-output per sub-formula might be not enough.

Correct reduction

For each $\mathbf{E} \varphi$, add outputs $d_{1}, \ldots, d_{|Q|}, v:\{0 \ldots|Q|\}$, where Q are the states of an NBW for φ. Use (a), (b), but replace (c) with:

$$
\bigwedge_{i \in\{\mathbf{1} \ldots|\mathbf{Q}|\}} \mathbf{G}\left[v_{E \varphi}=i \rightarrow\left(\mathbf{G} d_{i} \rightarrow \varphi\right)\right]
$$

$|Q|$ number of direction-outputs suffice, because the (memory-less) verifier can pass through a tree node in up to $|Q|$ different automaton states.

CTL* specification
$I=\{r\}, O=\{g\}, \varphi=$ AGEFG $\neg g$
is translated into LTL specification:
$I=\{r\}, O=\left\{g, p_{A G}, p_{E F G}, d_{E F G}\right\}$,
$\varphi=p_{A G} \wedge \mathbf{G}\left(p_{A G} \rightarrow \mathbf{G} p_{E F G}\right) \wedge$ $\mathbf{G}\left(p_{E F G} \wedge \mathbf{G} d_{E F G} \rightarrow \mathbf{F G} \neg g\right)$

$p_{A G}, p_{E F G,}$
$\neg p_{A G}, p_{E F G,}$
$d=\neg r$
$d=a n y$
$I=\{r\}, O=\{g\}, \mathbf{A G} \mathbf{E X}(g \wedge \mathbf{F} \neg g)$ becomes

$$
\begin{aligned}
& I=\{r\}, O=\left\{g, p_{A}, p_{E}, d_{E}\right\} \\
& p_{A} \wedge \mathbf{G}\left(p_{A} \rightarrow \mathbf{G} p_{E}\right) \wedge \\
& \mathbf{G}\left(p_{E} \wedge \mathbf{G} d_{E} \rightarrow \mathbf{X}(g \wedge \mathbf{F} \neg g)\right)
\end{aligned}
$$

won't work

Properties of the Reduction why can we

- $\Phi_{L T L}$ is realizable $\Leftrightarrow \Phi_{C T L^{*}}$ is realizable - $\left|\Phi_{L T L}\right|=E X P\left(\left|\Phi_{C T L *}\right|\right)$
- ... but the complexity stays in 2EXPTIME - Systems can get larger
- Experiments: fast when the number of \mathbf{E} subreduce CTL* synthesis to LTL synthesis, but cannot reduce CTL* MC to LTL MC? We introduce new outputs and they are used by the LTL formula. The synthesizer has to generate them, but MC is not aware of them.

