
PARTY
Parameterized Synthesis of Token Rings?

Ayrat Khalimov, Swen Jacobs, and Roderick Bloem

Graz University of Technology, Austria

Abstract. Synthesis is the process of automatically constructing an im-
plementation from a specification. In parameterized synthesis, we con-
struct a single process such that the distributed system consisting of an
arbitratry number of copies of the process satisfies a parameterized spec-
ification. In this paper, we present Party, a tool for parameterized syn-
thesis from specifications in indexed linear temporal logic. Our approach
extends SMT-based bounded synthesis, a flexible method for distributed
synthesis, to parameterized specifications. In the current version, Party
can be used to solve the parameterized synthesis problem for token-ring
architectures. The tool can also synthesize monolithic systems, for which
we provide a comparison to other state-of-the-art synthesis tools.

1 Introduction

Synthesis methods and tools have received increased attention in recent years,
as suitable solutions have been found for several synthesis tasks that have long
been considered intractable. Although current tools have made large strides in
efficiency, the run time of synthesis tools and the size of the resulting system
still depend strongly on the size of the specification. In the case of parameterized
specifications, this is particularly noticeable, and often unnecessary.

Bounded synthesis [13] is a method for solving the LTL synthesis problem
by considering finite-state implementations with bounded resources. The space
of all possible implementations is explored by iteratively increasing the bound.
While several tools for LTL synthesis are based on variants of this approach [9,3],
none of the available tools support distributed or parameterized synthesis.

In this paper, we introduce Party, the first tool that implements param-
eterized synthesis [14], based on the original SMT-based approach to bounded
synthesis. Using cutoff results from parameterized verification [10], parameter-
ized synthesis problems are reduced to distributed synthesis problems, and solved
by bounded synthesis. While mainly intended to solve parameterized synthesis
problems, Party can also be used for standard (monolithic) synthesis tasks.

Party is available at https://github.com/5nizza/Party. In the following
sections, we present the background and implementation details of Party, and
experimental results comparing Party to existing synthesis tools.

? This work was supported in part by the European Commission through project
DIAMOND (FP7-2009-IST-4-248613), and by the Austrian Science Fund (FWF)
under the RiSE National Research Network (S11406)

https://github.com/5nizza/Party

2 Ayrat Khalimov, Swen Jacobs, and Roderick Bloem

ILTL LTL3BA Encoder

Architecture

Z3
Mealy/Moore
model

Optimizer

increase bound

+
-

Fig. 1: The Party high-level control flow.

2 Background: Parameterized Synthesis

We use an approach that reduces the problem of LTL synthesis to a sequence
of first-order satisfiability problems. This reduction, called Bounded Synthesis,
has been introduced by Schewe and Finkbeiner [13] for the case of distributed
systems with a fixed number of finite-state components. It is based on a trans-
lation of the specification into a universal co-Büchi automaton, followed by the
generation of a first-order constraint that quantifies over an unbounded number
of states. The existence of a solution to this constraint is equivalent to the realiz-
ability of a system accepted by the automaton, and thus synthesis is reduced to
a satisfiability problem. To make this problem decidable, an additional bound on
the size of the implementation is asserted, resulting in a semi-decision procedure
for the problem by considering increasing bounds.

Based on results by Emerson and Namjoshi [10] on model checking param-
eterized token rings, Jacobs and Bloem [14] extended the bounded synthesis
method to parameterized systems, consisting of an arbitrary number of isomor-
phic processes. Depending on the syntactic form of the specification, synthesis of
parameterized token rings can be reduced to synthesis of isomorphic processes
in small rings, and the resulting implementations are guaranteed to satisfy the
specification in rings of arbitrary size. The sufficient size of the ring is called the
cutoff and should not be confused with the bound on size of individual processes.

In previous work [16], we used results by Clarke et al. [5] to extend the appli-
cability of this approach, and generalized optimizations from parameterized or
distributed verification to synthesis methods, to improve its efficiency in practice.

While the approaches above have been implemented in a prototype be-
fore [16], in Party we have added several features such as the synthesis of
Mealy machines, as well as the synthesis of non-parameterized, monolithic, sys-
tems. Also, we have refactored our implementation for usability, including an
input language that is derived from the language used by Acacia+.

3 Tool Description

The high-level control flow of Party is given in Fig. 1.

Input. Specifications consist of four parts: inputs, outputs, assumptions and
guarantees. Assumptions and guarantees are in ILTL and may contain universal
quantifiers at the beginning of the expression. This simple structure of prop-
erties, ∀i. Ai → ∀j. Gj , is enough to model all examples we have considered

PARTY Parameterized Synthesis of Token Rings 3

thus far. The format of the language is very similar to that of Acacia+; an ex-
ample specification is given in Listing 1. Note that, although specifications of
parameterized token rings are in ILTL\X, Party supports1 a X operator whose
semantics is local to a given process [16].

[INPUT_VARIABLES]

r;

[OUTPUT_VARIABLES]

g;

[ASSUMPTIONS]

Forall (i) r_i =0;

Forall (i) G(((r_i =1)*(g_i =0) ->X(r_i =1)) *

((r_i =0)*(g_i =1) ->X(r_i =0)));

Forall (i) G(F((r_i =0)+(g_i =0)));

[GUARANTEES]

Forall (i) g_i =0;

Forall (i,j) G(!((g_i =1) * (g_j =1)));

Forall (i) G((((r_i =0)*(g_i =0))->X(g_i =0)) *

(((r_i=1)*(g_i =1))->X(g_i =1)));

Forall (i) G(F(((r_i =1)*(g_i =1)) +

((r_i =0)*(g_i =0))));

Listing 1: Specification of parameterized Pnueli arbiter.

Optimizer. Optimizer takes as input an ILTL specification and an architec-
ture (currently token-ring or monolithic). It adds domain-specific environment
assumptions, such as fair scheduling, to the specification and optimizes it ac-
cording to user provided option -opt (no, strength, async hub, sync hub).
Then, Optimizer identifies the cutoff of the specification and instantiates it ac-
cordingly. The instantiated specification is in LTL without quantifiers, and can
be synthesized with an adapted version of the bounded synthesis approach.

Encoder, Z3 SMT Solver. The LTL specification obtained from Optimizer
is translated into an automaton by LTL3BA [1]. The result is passed to En-
coder, together with the architecture. Currently Encoder supports monolithic
architectures and parameterized token rings, but it can be extended to other
parameterized architectures and general distributed synthesis.

Given a bound on the implementation, Encoder generates an SMT query in
AUFLIA logic. This query is fed to solver Z3 [6] for a satisfiability check. If the
SMT query for a given bound is unsatisfiable, control is returned to the Encoder
who increases the bound, encodes a new query and feeds it to the solver. If the
query is satisfiable, the model is converted into a Mealy or a Moore machine.

Output. For realizable inputs, Party outputs a Mealy or Moore machine in
dot or nusmv format. NuSMV v2.5.4 [4] can be used for model checking.

1 (Added after publication) That is not true – although local next can be used together
with –sync hub option, in other cases the tool of version 1.0 does not automatically
rewrite the specification.

4 Ayrat Khalimov, Swen Jacobs, and Roderick Bloem

sy
nt

he
si

s
tim

e,
 s

ec
.

0.1

1

10

100

1000

104

clients
2 3 4 5 6 7

Party(async_hub)
Acacia+
Unbeast

#
st

at
es

10

100

1000

104

clients
2 3 4 5 6 7

Fig. 2: Synthesis time and model size on a parameterized full arbiter example[16].
The tools demonstrate similar behavior on ‘x arbiter’ example and on ‘Pnueli’
arbiter (but in the latter case async hub optimization is not complete).

Implementation. Party is written in python3 (5k lines of code) and tested on
Ubuntu 12.04. Python does not introduce a significant overhead since the most
computationally expensive parts are done in LTL3BA (v.1.0.1) and Z3 (v.4.3.1).

4 Experiments

We compare Party with Acacia+(v2.1) and Unbeast (v0.6b) on parameterized
and several monolithic examples.

Parameterized benchmarks. To test parameterized part of Party, we use
several arbiter specifications: full arbiter [16], ‘Pnueli’ arbiter in GR(1) style,
x arbiter that uses the local next operator, and variants of these.

Fig. 2 shows the efficiency of parameterized synthesis compared to the stan-
dard approach, for ‘full’ arbiter with a parametric number of clients. Starting
with 6 clients, Party outperforms the other tools by orders of magnitude. The
other tools can only generate arbiters with 5 or 6 clients within one hour, whereas
the parameterized approach can stop after synthesizing a token ring of cutoff size
4, and clone the resulting process model to form a ring of any larger size.

The right-hand side of the figure shows implementation size with increasing
number of clients. Models generated by Party are several orders of magnitude
smaller than others and grows less steeply with increasing the number of clients.

Monolithic benchmarks. For the comparison we use realizable benchmarks
from tool Lily (3,5-10,12-23) [15], load balancer(lb2-lb4) [9], and genbuf bench-
mark(gb2)[2]. Table 1 compares times of Party with times of Acacia+/Unbeast.
All models synthesized by Party were model checked with NuSMV [4].

It is difficult to provide a fair comparison due to different semantics of sys-
tem models. For example, Acacia+ outputs Moore machines, Unbeast Mealy
machines as NuSMV models, and Party supports both. Also, Unbeast has
its own xml-based input format and does not provide a converter from other
formats. Therefore, we could not run Unbeast on gb2 benchmark.

The difficulty of fair comparison is reflected by Table 1. The tools were run
with their default parameters. Unbeast was run with extracting models option.
Acacia+ and Party were provided with two different specifications: in Moore

PARTY Parameterized Synthesis of Token Rings 5

Table 1: Comparison of Party monolithic with Acacia+ and Unbeast
(t/o=1h). Numbers in parenthesis mean the size of implementation2

lily lily16 lb2 lb3 lb4 gb2

Unbeast(Mealy) 4(540/160) 0.1(55/54) 0.2(25/11) 1(576/33) 13(m/o) -
Acacia+(Mealy) 12(80) 1(15) 2(10) 1(42) 54(145) -
Party(Mealy) 22(33) 35(6) 1(1) 3(2) 139(3) -

Acacia+(Moore) 7(61) 1(15) 1(7) 4(14) 1639(41) 1(49)
Party(Moore) 12(40) 1526(8) 1(3) 364(6) t/o t/o

semantics (the system moves first), and in Mealy semantics (the environment
moves first). In the second case Party generated Mealy models, while Acacia+
still generated Moore-like models. The table shows that Unbeast outperforms
other tools in terms of synthesis time, and models in Party are the smallest.
A detailed analysis shows that Party spends most of the time in SMT solving,
where in turn proving unsatisfiability for bounds that are too small takes most of
the time. For example, the synthesis time for lily16 is 25 minutes if we explore all
model sizes starting with 1. But if we force Party to search the model of exact
size 8, the solution is found in 2 minutes. This means that we need to explore
incremental solving and other methods to avoid long unsatisfiability checks.

Incremental solving. Party supports two incremental approaches: for increas-
ing size of rings (parameterized architectures only), and for increasing bounds.

Instead of searching for a model in a token ring of the cutoff size, we can use
even smaller rings and then check if the result satisfies the specification in a ring
of sufficient size. Preliminary experiments demonstrate the effectiveness of this
approach: the ‘Pnueli’ arbiter can be synthesized in 50 seconds using the usual
approach vs. 15 seconds using the incremental approach.

To handle increasing bounds, we can use incrementality of SMT solvers when
unsatisfiability for the current bound is detected. When the bound is increased,
we pull constraints directly relating to the old bound, and push new ones. On
most benchmarks, this approach is comparable to non-incremental one, but on
some examples it is much faster: full3: 506 seconds (orig) vs. 140 seconds (incr).

5 Conclusions

We presented Party, a tool for parameterized synthesis. In the current version,
the tool can synthesize Mealy and Moore machines as process implementations
in monolithic architectures or parameterized token-ring architectures. For the
latter case, it implements optimizations that speed up synthesis by several orders

2 Unbeast model sizes are calculated by NuSMV with -r option as suggested by
Rüdiger Ehlers. Two sizes are given: for default model extraction method, and for a
learning based method [8]. On lb4 NuSMV crashed with a memory allocation error.

6 Ayrat Khalimov, Swen Jacobs, and Roderick Bloem

of magnitude. The input language is derived from languages of existing tools,
supports full LTL for monolithic and ILTL\X for parameterized architectures.

Besides the fact that this is the first implementation of parameterized syn-
thesis, an experimental comparison to other synthesis tools has been difficult
because tools are often specialized to a subclass of problems, and use different
input languages (see also Ehlers [7]). It may be worthwhile to discuss standards
for languages and subclasses of synthesis problems, much like in other automated
reasoning communities, e.g., represented by the SMT-LIB initiative.

Party is designed modularly, and we are working on several extensions. Most
importantly, parameterized synthesis can be extended to other architectures that
allow automatic detection of cutoffs [5,11]. Also, we plan to further increase
efficiency of the synthesis process, either by more high-level optimizations or by
integration of verification techniques, like the lazy synthesis approach [12].

References

1. Babiak, T., Kret́ınský, M., Rehák, V., Strejcek, J.: LTL to büchi automata trans-
lation: Fast and more deterministic. In: Flanagan, C., König, B. (eds.) TACAS.
LNCS, vol. 7214, pp. 95–109. Springer (2012)

2. Bloem, R., Galler, S., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Specify, compile, run: Hardware from PSL. ENTCS 190(4), 3–16 (2007)

3. Bohy, A., Bruyre, V., Filiot, E., Jin, N., Raskin, J.F.: Acacia+, a tool for LTL
synthesis. In: Madhusudan, P., Seshia, S. (eds.) CAV. LNCS, vol. 7358, pp. 652–
657. Springer (2012)

4. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV Version 2: An OpenSource Tool for Symbolic
Model Checking (July 2002)

5. Clarke, E.M., Talupur, M., Touili, T., Veith, H.: Verification by network decompo-
sition. In: Gardner, P., Yoshida, N. (eds.) CONCUR. LNCS, vol. 3170, pp. 276–291.
Springer (2004)

6. De Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS. LNCS, vol. 4963, pp. 337–340. Springer (2008)

7. Ehlers, R.: Experimental aspects of synthesis. In: Proceedings of the International
Workshop on Interactions, Games and Protocols. EPTCS, vol. 50 (2011)

8. Ehlers, R., Könighofer, R., Hofferek, G.: Symbolically synthesizing small circuits.
In: Cabodi, G., Singh, S. (eds.) FMCAD. pp. 91–100. IEEE (2012)

9. Ehlers, R.: Unbeast: Symbolic bounded synthesis. In: Abdulla, P., Leino, K. (eds.)
TACAS, LNCS, vol. 6605, pp. 272–275. Springer (2011)

10. Emerson, E.A., Namjoshi, K.S.: On reasoning about rings. Int. J. Found. Comput.
Sci. 14(4), 527–550 (2003)

11. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D.A. (ed.) CADE. LNCS, vol. 1831, pp. 236–254. Springer (2000)

12. Finkbeiner, B., Jacobs, S.: Lazy synthesis. In: Kuncak, V., Rybalchenko, A. (eds.)
VMCAI. LNCS, vol. 7148, pp. 219–234. Springer (2012)

13. Finkbeiner, B., Schewe, S.: Bounded synthesis. International Journal on Software
Tools for Technology Transfer pp. 1–21 (2012)

14. Jacobs, S., Bloem, R.: Parameterized synthesis. In: Flanagan, C., König, B. (eds.)
TACAS. LNCS, vol. 7214, pp. 362–276. Springer (2012)

PARTY Parameterized Synthesis of Token Rings 7

15. Jobstmann, B., Bloem, R.: Optimizations for LTL synthesis. In: FMCAD. pp.
117–124. IEEE Computer Society (2006)

16. Khalimov, A., Jacobs, S., Bloem, R.: Towards efficient parameterized synthesis. In:
Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI. LNCS, vol. 7737. Springer
(2013)

	PARTY Parameterized Synthesis of Token Rings

